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Simulation of laser wakefield acceleration of an ultrashort electron bunch
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The dynamics of the acceleration of a short electron bunch in a strong plasma wave excited by a laser pulse
in a plasma channel is studied both analytically and numerically in slab geometry. In our simulations, a fully
nonlinear, relativistic hydrodynamic description for the plasma wave is combined with particle-in-cell methods
for the description of the bunch. Collective self-interactions within the bunch are fully taken into account. The
existence of adiabatic invariants of motion is shown to have important implications for the final beam quality.
Similar to the one-dimensional case, the natural evolution of the bunch is shown to lead, under proper initial
conditions, to a minimum in the relative energy spread.
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I. INTRODUCTION

The study of plasma-based devices for acceleration
electron beams has gained a lot of interest lately, in part
lar because recent advances in laser technology have ma
possible to produce ultrashort, ultraintense pulses, which
drive high-amplitude plasma waves~wakefields! in a plasma
@1–3#.

The maximal acceleration length in one acceleration s
tion is determined by phase slippage. Ideally, one would
to use the full dephasing length for acceleration, but due
diffraction, the acceleration length in a homogeneous plas
cannot exceed the Rayleigh length, which is usually ord
of magnitude smaller. Therefore, in order to take full adva
tage of the extremely high accelerating gradients of or
10–100 GeV/m that occur in plasma-based acceleration,
needs to form a guiding structure for the laser pulse@4#.

The plasma channel as a guiding structure is curre
under active investigation@5–10#. In a plasma channel, th
on-axis density depression acts as an optical fiber by ch
ing locally the value of the refractive index. It has be
shown @11,12# that for a hollow channel with a ‘‘square’
density profile, the wakefield has optimal properties in co
serving the beam quality of accelerated electrons. A m
realistic approach would involve a smooth density distrib
tion. The accelerating properties of laser wakefields
smooth density channels are discussed in Refs.@13–15#.

The energy acquired by an electron by acceleration i
plasma wave depends on the injection phase@16,17#. To
minimize energy spread, a phasing strategy for o
dimensional acceleration has been proposed earlier@22,23#.
In this paper, we discuss the generalization of this schem
the case of a two-dimensional setting, including the effe
of transverse motion on beam quality.

Due to the short plasma wavelength, phase control
severe problem. Controlled acceleration is possible for s
bunches of preaccelerated electrons, either by direct injec
from an rf gun@18# or by optical injection with laser pulse
@19–21#. The production of such short bunches is a ma
challenge for the realization of controlled LWFA: productio
of bunches with sub-ps length has been reported@24#, but in
this case the required~low! energy spread is lacking. To th
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of
u-
e it
an

c-
e
to
a

rs
-
r

ne

ly

g-

-
re
-
n

a

-

to
ts

a
rt

on

r

best of our knowledge, no experiment has yet produce
~sub-! 100 fs bunch with sufficiently small energy sprea
However, at Eindhoven University of Technology, a pho
cathode rf electron gun based on sophisticated techniqu
currently under development@25#: numerical modeling pre-
dicts the possibility of producing 1 nC, 100 fs electro
bunches with less than a few percent energy spread.

This paper is organized as follows. In Sec. II, the struct
of the wakefield is described using nonlinear hydrodynam
equations. In Sec. III, we present analytical results on e
tron acceleration in wakefields. In Sec. IV, the accelerat
process is studied numerically. Section V is devoted to su
mary and conclusions.

II. WAKEFIELD DESCRIPTION

As mentioned before, we consider a channel-guided la
wakefield acceleration scheme. The performed plasma c
nel is assumed to have a stationary density profile that
pends only on the transverse coordinate. To be specific,
use the following expression:

n0~x!5n00@12D~12x2/W2!e2x2/2W2
#,

wheren00 is the ambient plasma density,x is the transverse
coordinate,D is the density modulation, andW is the channel
width. This form of plasma channel is close to what has be
found in recent experiments@26,27#. As an example, a den
sity profile with D50.5 is given in Fig. 1.

The excited wakefield is described by a set of fully no
linear hydrodynamic equations@28,29# for the motion of
plasma electrons~plasma ions are taken to be immobile!.
The quasistatic approximation is applied, so that all fie
depend on the longitudinal coordinatez and time t only
through the combinationz5z2vwt, wherevw is the group
velocity of the laser pulse. The corresponding Lorentz fac
gw is taken to be large (gw@1), so that in calculating the
wakefieldsvw may be approximated withc @30#.

The ponderomotive potentialI of the laser pulse is con
sidered to be a given function ofx andz:

I 5I 0f 1~z! f 2~x!,
©2001 The American Physical Society02-1
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whereI 0 denotes the maximal intensity. The axial profile
chosen to be

f 1~z!5H F12S z2z0

L D 2G3

, uz2z0u,L

0, uz2z0u>L,

wherez0 is the position of the laser pulse and 0.908L its full
width at half maximum ~FWHM!. The radial profile is
Gaussian,

f 2~x!5e2x2/R2
,

whereR is the width of the laser pulse. ForR, we take the
value that gives matched propagation~i.e., without oscilla-
tions in size or amplitude! in a parabolic channel@31,32#:

R5S 2

3D D 1/4

W1/2.

In Fig. 2, a plot of the ponderomotive potential is given.
We introduce the following dimensionless quantities: tim

t̃ 5vpt, coordinates (x̃,z̃)5kp(x,z), ion ~background! den-
sity ñ05n0 /n00, plasma electron densityñ5ne /n00, bunch
electron densityñb5nb /n00, plasma electron momentum
( p̃x ,p̃z)5 (px ,pz)/(mec), plasma electron velocity (ṽx ,ṽz)
5(vx ,vz)/c, and wakefield components (Ẽx ,B̃y ,Ẽz)

FIG. 1. Density profile withD50.5.

FIG. 2. Laser profileI (x,z).
04650
5e(Ex ,By ,Ez)/(mevpc). In what follows, the tildes are
dropped for convenience. Herevp and kp are the electron
plasma frequency and the wave number associated with
ambient plasma densityn00: vp

254pn00e
2/me , kp5vp /c.

As usual, the~averaged! Lorentz factor of plasma elec
trons is defined asgp5A11px

21pz
212I and the wakefield

potentialF5gp2pz such that

Fx52Ex1By5
]F

]x
,

Fz52Ez5
]F

]z
,

whereFx , Fz denote components of the Lorentz force acti
on an ultrarelativistic~bunch! electron. The wakefield equa
tions are combined to~see the Appendix!

]2F

]z2
2

]2F

]x2
2

]2

]x]z S 1

h

]2F

]x]z D1hF

5hgp2
]2gp

]x2
1nb , ~1!

where we introduce the quantityh5n/gp . Equation~1! is
highly nonlinear through the dependence ofgp andh on F:

h5
1

F S n01
]2F

]x2 D ,

gp5
1

2F F11F21S 1

h

]2F

]x]z D 2

12I G .
The above equations are solved numerically under

conditions that the plasma is at rest ahead of the laser p
(F51 for z>0) and that the fields fall off exponentially a
large uxu. A typical field and density distribution is given in
Fig. 3, which shows contour plots ofh, F, Fx , Fz , By , and
a combined plot ofI andnb . The parameters are~in dimen-
sionless units! channel widthW53.141, channel modulation
D50.5, laser spot sizeR51.905, laser pulse lengthL
51.111, and peak amplitudeI 050.2. The electron bunch
parameters are lengthdz50.47, widthdx50.47, normalized
transverse emittancesx50.022, and peak ofnb ~electron
bunch density! 0.143. In dimensional units, these numbe
correspond to a bunch of width and length 40 fs or 11.8mm
FWHM, normalized transverse emittance 0.35 mm mr
and a peak current of about 0.1 kA for a plasma wavelen
of lp5100 mm.

In Fig. 3, it can be seen that the amplitude of the focus
force increases with the distance behind the pulse and
amplitude of the accelerating force decreases with the
tance behind the pulse. The overlap of focusing and acce
ating regions behind the laser pulse is clearly visible. Th
features are in accordance with the results of Ref.@13#. Also
visible in Fig. 3 is the influence of the electron bunch, on t
wakefields, caused bybeam loading. Inside and directly be-
hind the bunch there is enhanced focusing and diminis
2-2
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SIMULATION OF LASER WAKEFIELD ACCELERATION . . . PHYSICAL REVIEW E63 046502
acceleration. The magnetic field around the bunch is stro
even outside the given range. The cutoff was used in o
not to spoil the fine details of the field structure behind
bunch. The plot ofh exhibits narrow regions with high
plasma-electron density, corresponding to sharp gradien
Fx ,Fz .

III. RELATIVISTIC ELECTRON DYNAMICS
IN A WAKEFIELD

In this section, we first discuss the acceleration proces
the one-particle level and later include effects due to fin
width and length of the bunch as well as beam loading.

A. Motion of a single electron

The Hamiltonian for a relativistic electron in a wakefie
is

H5g2vwPz2F,

whereg5A11Pz
21Px

2 is the electron’s Lorentz factor an

PW 5(Px ,Pz) its ~dimensionless! momentum. In the small-
angle approximation, the Hamiltonian can be split into lo

FIG. 3. Contour plots ofh, F, Fx , Fz , By , I andnb as func-
tions of x, z. The arrow indicates the direction of propagation.
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gitudinal and transverse parts:H'H i1H' . The longitudi-
nal part is identical to the Hamiltonian of an electron in
one-dimensional wakefield:

H i5g i2vwPz2F (0),

whereg i5A11Pz
2 and the superscript means taking the o

axis value, so thatF (0)[F(z,x50) is a function ofz only.
The one-dimensional equations of motion are

dz

dt
5

Pz

g i
2vw , ~2!

dPz

dt
5Fz

(0) , ~3!

where the subscript denotes a corresponding derivative oF.
The first equation describes phase slippage and the se
the energy transfer between the electron and the wakefi
For large energiesg i@gw we can approximately solve th
phase-slippage equation:

dz

dt
'

1

2gw
2

. ~4!

From this we can estimate a typical time scale~in dimension-
less units! for longitudinal motion as

t i.gw
2 .

The transverse part of the Hamiltonian is

H'5
1

2 S Px
2

g i
2Fxx

(0)x2D ,

whereFxx
(0) denotes the curvature of the potentialF in the

vicinity of the axis. ForFxx
(0),0, H' is the Hamiltonian of a

harmonic oscillator that depends on the variablesz andPz as
parameters. We can take the (z,Pz) dependence to be adia
batically slow if the time scale involved in transverse osc
lation is much shorter than the time scale of longitudin
motion. In that case, the time scale of a transverse oscilla
can be estimated as

t'.g i
1/2uFxx

(0)u21/2.

One can easily see that the conditiont' /t i!1 is satisfied
for a large part of the acceleration process unless the p
cle’s energy is extremely high~of order 100 TeV forgw

5100) or the electron slips too close to a defocusing reg
~i.e., near a point whereFxx

(0)50).
The existence of adiabatic invariance for the transve

motion means the conservation of the area enclosed in tr
verse phase space,

R Pxdx5const.

Thus the product ofx0 andP0, the amplitudes of oscillation
of x andPx , is a constant:
2-3



b
te
va

ta
f

s
to
ns
n
rg
lo
s

s
o
o

on
be
pa
If

na
th
di

s-
e
in
rs
n
m
fo
o
s

ace

are

it-
ro-
ads
al
h

not
nal
the
are

on

ase

u-

ini-
ini-
ch

ler-

hat
o-
ove

ally

par-

REITSMA, GOLOVIZNIN, KAMP, AND SCHEP PHYSICAL REVIEW E63 046502
x0P05A0 .

Combining this with the equations of motion results in

x05A0
1/2g i

21/4uFxx
(0)u21/4. ~5!

If an electron remains inside the focusing region,Fxx
(0) will

change only slightly, but the electron’sg i may go up from
about 10 to about 3000. In that case, Eq.~5! indicates that the
amplitude of the transverse oscillation goes down rapidly
a factor of about 4. This focusing effect of the accelera
electrons, which occurs as a consequence of adiabatic in
ance, is observed clearly in our simulation results~see
Sec. IV!.

The focusing of an accelerated electron has an impor
implication for the energy spread. The averaged equation
energy gain is

dPz

dt
5Fz

(0)1
1

2
Fzxx

(0) x2̂, ~6!

where the caret denotes averaging over the transverse o
lations. Equation~6! describes the first-order correction
Eq. ~3! due to transverse motion by taking into account tra
verse variations of the accelerating field. Since commo
Fzxx

(0) ,0, it was concluded that electrons undergoing la
transverse oscillations gain less energy than electrons c
to the axis@33–35#. However, this is not always true. A

mentioned before, due to focusing, the value ofx2̂ decreases

and the influence of thex2̂-term becomes less important a
the electron gains energy. To fully appreciate the effects
transverse oscillations we must also consider its effect
phase slippage, given by

dz

dt
5

Pz

g i
S 12

Px
2̂

2g i
2D 2vw . ~7!

This equation describes the first-order correction to Eq.~2!
due to transverse motion. For electrons atg i@gw , this cor-
rection is very small and can be neglected. For electr
injected atg i,gw , as considered here, the effect must
taken into account and leads to a phase difference for
ticles with different amplitudes of transverse oscillation.
this phase difference is large enough, it is the longitudi
rather than transverse variations in an accelerating field
determine the energy difference between particles with
ferent amplitudes of oscillation.

B. Bunch effects

An important issue is the effect of finite width on tran
verse emittance. Due to adiabatic invariance, the area
closed in transverse phase space is conserved for each
vidual trajectory. From this we conclude that the transve
emittance is conserved insofar as the bunch distributio
matchedto the phase-space orbits of the transverse Ha
tonian@36#. For mismatched beams, nonlinearities in the
cusing force will cause emittance growth in the first part
the acceleration. Since the transverse motion is much fa
04650
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than the longitudinal one, we may consider the phase-sp
orbits corresponding to the initial values ofg i and Fxx

(0) .
Examples of matched and mismatched distributions
given in Fig. 4.

Note that the effect of beam loading on transverse em
tance is relatively unimportant. The bunch wakefields int
duce extra focusing in the rear part of the bunch, which le
to a change inFxx

(0) . The bunch adjusts itself to the potenti
on the short time scalet' , whereas the evolution of bunc
wakefields takes place on the long time scalet i of longitu-
dinal motion. Consequently, the adiabatic invariance is
influenced by collective effects and there is no additio
emittance growth. By a similar reasoning, one finds that
effects of finite bunch length on transverse emittance
unimportant.

Now let us discuss the effect of finite bunch length
energy spread. Sinceg i@gw holds for a large part of the
acceleration, we may use the approximate solution for ph
slippage@Eq. ~4!# to determine energy gainDPz for a par-
ticle injected atz in and extracted atzex:

DPz52gw
2@F (0)~zex!2F (0)~z in!#. ~8!

For a short bunch injected with typical phase spreaddz
!lp around the injection phase, we may estimate the cum
lative energy spreaddPz

(1) from Eq. ~8! as

dPz
(1)52gw

2dz@Fz
(0)~zex!2Fz

(0)~z in!#. ~9!

This equation suggests that there are two strategies to m
mize energy spread: either use a very short bunch to m
mizedz @37# or arrange injection and extraction phases su
that

Fz
(0)~zex!2Fz

(0)~z in!50.

Note that this can also be written as

~zex2z in!Fzz
(0)~zM !50,

where zM denotes a certain point in the interval@z in ,zex#.
Therefore, this minimizing strategy requires that the acce
ating gradient has its maximum somewhere betweenz in and
zex. At the same time, the transverse stability requires t
the particles remain inside the focusing region. For tw
dimensional wakefields in a homogeneous plasma, the ab
conditions cannot be satisfied simultaneously, since typic

FIG. 4. Matched~left! and mismatched~right! initial bunch dis-
tributions: circles are phase space orbits, gray area represents
ticle distribution of the electron bunch.
2-4
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the accelerating gradient has its maximum at the edge of
focusing region. However, the overlap of focusing and acc
erating regions is the unique feature for wakefields in plas
channels that makes it possible to apply the second minim
ing strategy.

The effect of beam loading on energy spread is de
mined by the modification of the accelerating force inside
bunch due its own wakefields. The cumulative energy diff
encedPz

(2) due to beam loading can be estimated as

dPz
(2)52xgw

2~zex2z in!, ~10!

where x denotes the beam-loading efficiency. Genera
speaking, 100% beam loading corresponds to the max
charge that can be accelerated. As a rather simple defin
we use

x5a
Q

I 0
,

where

Q5E nb~x,z!dx dz

is the total charge in the bunch. The coefficienta'0.33 is
determined empirically from comparing on-axis amplitud
of wakefields excited by the laser pulse and the elect
bunch separately. The condition for minimum energy spr
is that the terms in Eq.~9! and Eq.~10! cancel each other:

dz@Fz
(0)~zex!2Fz

(0)~z in!#1x~zex2z in!50. ~11!

This condition can be satisfied if a pointzM in the interval
@z in ,zex# exists such that

Fzz
(0)~zM !52

x

dz
.

The above condition was derived for one-dimensional ac
eration @22,23#, but it appears to be applicable in the tw
dimensional case as well.

IV. SIMULATION RESULTS

To study the bunch dynamics self-consistently, a num
cal integration of the equations of motion

dx

dt
5vx ,

dz

dt
5vz2vw ,

dPx

dt
5Fx ,

dPz

dt
5Fz
04650
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has been performed. As mentioned before, the bunch den
as a source term is included in the calculation ofFx ,Fz .
This permits a study of the influence of beam loading on
acceleration process.

In Figs. 5 and 6, the results of a simulation with bea
loadingx50.17 andgw5100 are shown. The electron bunc
is injected atz in5214.92, with energŷ Pz&520 ~where
^•••& denotes averaging over the bunch distribution!, spatial
dimensionsdz50.47, dx50.15, and normalized rms trans
verse emittancesx50.022. These parameters correspond
the bunch depicted in Fig. 3, except thatdx is smaller.

In Fig. 5, the energy gain and relative energy spread
shown as functions of acceleration length, given as a frac
of the dephasing lengthLd5gw

2lp . A minimum in energy
spread of about 6.5% is seen to occur after accelerating
a lengthL50.39Ld . At this point, ^Pz& is 2750~1.4 GeV!.

In Fig. 6, a few snapshots of (z,Pz)-phase space are de
picted. It is clearly seen that the ‘‘thickness’’ of the distrib
tion ~energy spread at a given phase! is small compared to
the total energy spread. From this we conclude that the fi
length of the bunch is a much more important source
energy spread than finite width. Also clearly visible is t
cancellation effect of energy spread: in the first stage of
celeration, the front of the bunch gains more energy than
rear; in the second stage, the rear gains more than the f

In Fig. 7, transverse emittance as a function of accele

FIG. 5. Energy and relative energy spread as functions of ac
eration lengthL/Ld .

FIG. 6. Phase-space snapshots at various acceleration le
L/Ld .
2-5
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REITSMA, GOLOVIZNIN, KAMP, AND SCHEP PHYSICAL REVIEW E63 046502
tion length is shown for a matched bunch and for a m
matched bunch. The matched bunch has the same param
as the one in Figs. 5 and 6. The mismatched bunch has
same initial conditions, except that it is wider~namely,dx
50.47, corresponding to Fig. 3!. Figure 7 clearly shows
emittance conservation for both bunches during a large
of the acceleration. In the inset, a detail of the beginning
the acceleration is given, which shows rapid emittan
growth for the mismatched bunch.

For these bunches, a plot ofdx and dz as functions of
acceleration length is shown in Fig. 8. This plot shows
rapid focusing of the bunches, accompanied by a slight
crease in bunch length. These effects are more pronou
for the mismatched bunch.

V. SUMMARY AND CONCLUSIONS

In summary, we have studied the dynamics of an acce
ated electron bunch in a channel-guided laser wakefield
celerator in a plasma channel, paying particular attention
beam quality. We have analyzed the influence of transve
bunch dynamics on transverse emittance and energy sp
Due to the difference in time scales of longitudinal and tra
verse motion, there exists an adiabatic invariant for the tra
verse motion. This invariance results in conservation
transverse emittance for matched beams, even with be
loading effects taken into account. As for relative ener

FIG. 7. Transverse emittance as a function of accelera
lengthL/Ld ~inset: detail!.

FIG. 8. Bunch widthdx and bunch lengthdz as functions of
acceleration lengthL/Ld for matched ~a! and mismatched~b!
bunch.
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spread, we have shown that the strategy of optimal pha
developed in@22# for one-dimensional acceleration can b
successfully applied to our two-dimensional setting as w
The main reason for this is the transverse focusing of
electron bunch, which strongly reduces the influence
transverse dynamics on the final energy spread. Under pr
initial conditions we find that the main contributions to th
energy spread, namely due to finite bunch length@Eq. ~9!#
and beam loading@Eq. ~10!#, may cancel each other, resul
ing in a low relative energy spread.

APPENDIX: NONLINEAR WAKEFIELD EQUATIONS

Using Faraday’s equation, it is easy to show that the
lation

BW 5¹W 3pW

holds for all t.0 if it holds at t50, as a consequence o
conservation of the flux of generalized vorticity. From th
momentum balance, an expression for the electric field
derived:

EW 52
]pW

]t
2¹W gp ,

where

gp5A11pW 212I

is the Lorentz factor of plasma electrons, averaged over
‘‘fast’’ oscillations in the optical field. Combining the abov
relations with Ampe`re’s law yields

]2pW

]t2
1¹W 3~¹W 3pW !1¹W

]gp

]t
52nvW 1JWb ,

whereJWb denotes the current density of the electron bun
Poisson’s equation reads

2
]

]t
¹W •pW 2¹W 2gp5n02n1rb ,

whererb is the charge density of the electron bunch.
Applying the quasistatic approximation~all fields depend

on z and t only throughz5z2vwt'z2t) and using slab
geometry, we find

]2pz

]x]z
2

]2gp

]x]z
52nvx1Jb,x ,

]2pz

]z2
2

]2pz

]x2
1

]2px

]x]z
2

]2gp

]z2
52nvz1Jb,z ,

]2px

]x]z
1

]2pz

]z2
2

]2gp

]x2
2

]2gp

]z2
5n02n1rb .

n

2-6
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Approximating the bunch current asJb,x50, Jb,z5rb
52nb immediately leads to Eq.~1!:

]2F

]z2
2

]2F

]x2
2

]2

]x]z S 1

h

]2F

]x]z D1hF

5hgp2
]2gp

]x2
1nb ,

where the wakefield potentialF is defined as

F5gp2pz

andh is

h5
n

gp
.

All field variables can be expressed as functions ofF:

h5
1

F S n01
]2F

]x2 D ,

px52
1

h

]2F

]x]z
,

pz5
1

2F
~12F21px

212I !,
C.

C.
e

y

E.

y,

i,
d

an

S.

ev

,

04650
gp5
1

2F
~11F21px

212I !,

Ex5
]px

]z
2

]gp

]x
,

By5
]px

]z
2

]pz

]x
,

Ez5
]pz

]z
2

]gp

]z
.

In the linear~small-amplitude! regime,h and gp are inde-
pendent ofF:

F511dF~ udFu!1!→gp'11I , h'n0 ,

so that

F S n01
]2

]z2D S n02
]2

]x2D 1
1

n0

dn0

dx

]3

]x]z2GdF

5n0S n02
]2

]x2D I 1n0nb .

This is the equation for linear wakefields in a plasma ch
nel, previously derived in@13#.
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